Refining clusters in high dimensional text data
نویسندگان
چکیده
The k-means algorithm with cosine similarity, also known as the spherical k-means algorithm, is a popular method for clustering document collections. However, spherical k-means can often yield qualitatively poor results, especially for small clusters, say 25-30 documents per cluster, where it tends to get stuck at a local maximum far away from the optimal. In this paper, we present the first-variation principle that refines a given clustering by incrementally moving data points between clusters, thus achieving a higher objective function value. Combining first-variation with spherical k-means yields a powerful ping-pong strategy that often qualitatively improves k-means clustering. We present several experimental results to show that our proposed method works well in clustering high-dimensional and sparse text data. keywords: clustering, high-dimensional, k-means, refinement algorithm, first variation.
منابع مشابه
Multi-view Subspace Clustering for High-dimensional Data
The data today is towards more observations and very high dimensions. Large high-dimensional data are usually sparse and contain many classes/clusters. For example, large text data in the vector space model often contains many classes of documents represented in thousands of terms. It has become a rule rather than the exception that clusters in high-dimensional data occur in subspaces of data, ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملFrequency Sensitive Competitive Learning for Balanced Clustering on High-dimensional Hyperspheres
Competitive learning mechanisms for clustering in general suffer from poor performance for very high dimensional ( ) data because of “curse of dimensionality” effects. In applications such as document clustering, it is customary to normalize the high dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The ...
متن کاملRefining membership degrees obtained from fuzzy C-means by re-fuzzification
Fuzzy C-mean (FCM) is the most well-known and widely-used fuzzy clustering algorithm. However, one of the weaknesses of the FCM is the way it assigns membership degrees to data which is based on the distance to the cluster centers. Unfortunately, the membership degrees are determined without considering the shape and density of the clusters. In this paper, we propose an algorithm which takes th...
متن کاملSoft Subspace Clustering for High-Dimensional Data
High dimensional data is a phenomenon in real-world data mining applications. Text data is a typical example. In text mining, a text document is viewed as a vector of terms whose dimension is equal to the total number of unique terms in a data set, which is usually in thousands. High dimensional data occurs in business as well. In retails, for example, to effectively manage supplier relationshi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002